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Phosphorylation in the activation
loop as the finishing touch in
c-Kit activation
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Receptor tyrosine kinases are a group of transmem-
brane proteins that transmit signals in response to
stimulation by ligands including growth factors and
cytokines. They share a common mechanism of activa-
tion through receptor dimerization or oligomerization,
but subsequent routes to their full activation appear to
be various. A recent paper published by DiNitto et al.
(Function of activation loop tyrosine phosphorylation in
the mechanism of c-Kit autoactivation and its implica-
tion in sunitinib resistance. J. Biochem. 2010;147:601�
609) analysed a process of c-Kit autoactivation in
detail. They revealed that phosphorylation in the acti-
vation loop, which is crucial for activation of many
types of tyrosine kinases, is dispensable for c-Kit acti-
vation. However, the phosphorylation affects the sensi-
tivity of c-Kit to kinase inhibitors, thus representing the
finishing touch in c-Kit activation.
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Receptor tyrosine kinases play key functions in various
intercellular communication processes that drive em-
bryonic development as well as maintain homeostasis
in adults. They have a low basal kinase activity in the
resting state and are activated through trans-autopho-
sphorylation of their intracellular kinase domain upon
ligand-induced dimerization or oligomerization (1).
In many textbooks of biochemistry, activation of tyro-
sine kinases is often explained referring the insulin
receptor kinase, in which tyrosine phosphorylation in
the activation loop (A-loop) is the crucial step that
triggers kinase activation (2). Upon phosphorylation
by a basal kinase activity, the A-loop, which occludes
the catalytic site in the resting state, changes its
conformation to allow access of substrates and ATP,
leading to phosphorylation of substrates. Consistently,
many tyrosine kinases lose their activity upon muta-
tion of conserved tyrosine residue(s) in the A-loop (3).

However, there is no rule without exceptions. One rep-
resentative exception is epidermal growth factor recep-
tor (EGFR), in which mutation in the conserved
tyrosine located in the A-loop does not affect receptor
activation and induction of cell proliferation upon
ligand stimulation (4). EGFR is activated through for-
mation of an asymmetric dimer (5). Another exception
to this rule is c-Kit.

c-Kit is a receptor tyrosine kinase that is activated
in response to stimulation by stem cell factor.
Physiologically, it transmits signals required for devel-
opment of various types of cells including primordial
germ cells, haematopoietic progenitor cells, melano-
cytes and mast cells (6). Total loss of c-Kit activity is
embryonic lethal. Abnormal signal transduction of
c-Kit due to gain-of-function mutations is implicated
in several malignant tumours, among which well stu-
died is gastrointestinal stromal tumour (GIST) (7).
GIST is the most common mesenchymal tumour in
the human digestive tract, which appears to be origi-
nated from the interstitial cells of Cajar, pacemaker
cells for gut peristalsis. More than 80% of GISTs
have gain-of-function mutations in c-Kit, two-thirds
of which were found in the juxtamembrane (JM)
domain (7), suggesting an important role of the JM
domain during c-Kit activation. Subsequently, c-Kit
kinase activity was shown to be autoinhibited by the
JM segment through intramolecular interaction in the
resting state (8�10) (Fig. 1A). Phosphorylation or mu-
tation in the JM segment releases it from the autoinhi-
bitory position. Thus, phosphorylation in the JM
domain is the initial event during c-Kit activation.
Tyrosine residues in other regions are also phosphory-
lated. A phosphotyrosine in the ‘kinase insert’ domain
(KID) (tyrosine 703) is known to serve as a docking
site for Grb2 (11). In contrast, the specific role of phos-
phorylation of tyrosine 823 (Y823), located in the
A-loop, has not been well understood (9).

In the recent report, DiNitto et al. (12) analysed a
time course of tyrosine phosphorylation during in vitro
autoactivation of c-Kit using mass spectrometry. They
found that 14�22 phosphates are added during activa-
tion. They also monitored kinase activity of c-Kit
and examined its correlation with the tyrosine phos-
phorylation profile (Fig. 1B). As predicted, the extent
of tyrosine phosphorylation in the JM domain was
well correlated with the kinase activity. Notably,
Y823 in the A-loop was phosphorylated only after
the kinase activity reached near its maximum (490%
activity), suggesting that Y823 phosphorylation is not
required for c-Kit activation. Consistently, Y823F
mutant of c-Kit had a specific activity comparable to
that of wild-type c-Kit.

They next examined sensitivity of the Y823F mutant
to therapeutic kinase inhibitors. Mutations that cause
resistance to the inhibitors are found in the A-loop
(D816H/V) (13). Two tyrosine kinase inhibitors
have been approved for the treatment of GISTs:
imatinib mesylate (marketed as GleevecTM) and suni-
tinib malate (marketed as StentTM, for advanced
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imatinib-resistant GISTs). Both drugs inhibit c-Kit ac-
tivity through activation state-dependent interaction:
they bind to c-Kit when the A-loop is in the unacti-
vated conformation but not when it is in the activated
conformation, although their modes of binding to
c-Kit are distinct (10, 14). These drugs were thus
used as probes to monitor conformational equilibrium
of the A-loop in c-Kit. The Y823F mutant remained to
be sensitive to the drugs even after kinase activation,
indicating that the A-loop in the Y823F mutant adopts
the unactivated form to some extent.

The activation process of c-Kit thus consists of at
least two steps. First, tyrosine residues in the JM seg-
ment are phosphorylated, which release it from the
autoinhibitory position, leading to activation of the
kinase. This process is not enough for the A-loop to
exclusively adopt the fully activated conformation be-
cause the authors also found that c-Kit lacking the JM
domain is still sensitive to imatinib and sunitinib (12).
Secondly, Y823 in the A-loop is phosphorylated,
which results in shift of the A-loop conformation to-
wards the fully activated one. At present, the precise
role of this second step in c-Kit activation remains to
be elucidated because the apparent kinase activity
is not significantly affected by states of the A-loop
conformation. Phosphorylated Y823 may serve as
a docking site for some downstream effector proteins.
Alternatively, conformational transition of the A-loop
may somehow affect downstream signalling events.
These possibilities could be examined using cell-based
assay systems, instead of the in vitro autoactivation
system analysed in the present study. Intriguingly, a
mutation of tyrosine 823 to aspartic acid (Y823D)
has been reported as one of the secondary mutations

in imatinib-resistant GISTs (15�17). However, the
single Y823D mutation resulted in inactivation of the
Kit receptor kinase (12). Therefore, the combinatorial
effect of Kit mutations appears to be an interesting
issue to be addressed in the future.

Currently, various chemical compounds have been
used in the biochemical research field. Some of them
are quite useful in determining contribution of specific
signalling pathways to cell responses of interest, if ap-
propriately used (18). Many researchers may not be
interested in the mechanisms by which chemical com-
pounds affect activity of target proteins. Molecular
mechanisms underlying actions of imanitib and sunife-
nib were elucidated just because the resistance to these
drugs is a critical problem in the treatment of GISTs.
However, the present study provides us with a good
example of effective usage of therapeutic drugs with
defined mechanisms in basic science. Knowledge on
inhibitory mechanisms of chemical compounds would
be important not only in avoiding misunderstanding of
experimental data, but also in expanding their applica-
tions in basic research.
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Fig. 1 Time course of the tyrosine phosphorylation profile of c-Kit during autoactivation. (A) Three-dimensional structure of the auto-inhibited
form of c-Kit intracellular domain (Protein Data Bank code 1T45) (11). The JM segment (residues 547�581, shown in red) is in the auto-
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was deleted in the construct for crystallography. (B) Time course of autoactivation is shown in the graph. Tyrosine phosphorylation status is
shown above the graph. The JM domain is released from its autoinhibitory position, followed by fixation of the A-loop in the fully activated
conformation. Original data are derived from Ref. (12).
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